ted shifrin

Notes for Multivariable mathematics by Shifrin chapter 1

Shifrin Math 3510 Day31: Potential functions

Shifrin Math 3510 Day49: Eigenvalues and eigenvectors

Shifrin Math 3510 Day28: Proofs of the properties of the exterior derivative

Shifrin Math 3510 Day35: Surface integral calculations

Shifrin Math 3510 Day52: Applications to differential equations

Shifrin Math 3510 Day50: Applications

Shifrin Math 3510 Day45: Applications to Topology

Shifrin Math 3510 Day30: Work

Shifrin Math 3510 Day39: 4-dimensions

Shifrin Math 3510 Day44: Applications to Topology

Shifrin Math 3510 Day48: Eigenvalues and eigenvectors

Shifrin Math 3510 Day26: Differential forms and the exterior derivative

Shifrin Math 3510 Day2: Multiple Integrals

Shifrin Math 3510 Day3: Multiple integrals

Shifrin Math 3510 Day42: Gauss' Law

Shifrin Math 3510 Day38: Examples of Stokes' Theorem

Shifrin Math 3510 Day6: Fubini's Theorem

Shifrin Math 3510 Day36: Stokes' Theorem

Shifrin Math 3510 Day 4: Iterated Integrals

Shifrin Math 3510 Day37: Using Stokes' Theorem

Shifrin Math 3510 Day9: Polar Coordinates

Shifrin Math 3510 Day11: Physical applications

Shifrin Math 3510 Day47: Eigenvalues and Eigenvectors